Problem Class Dominance in Predictive
Dilemmas

Daniel Hintze

April 23,2014

Abstract

One decision procedure dominates a given one if it performs well on
the entire class of problems the given decision procedure performs well
on, and then goes on to perform well on other problems that the given
decision procedure does badly on. Performing well will be defined as
generating higher expected utility before entering a problem. In this paper
it will be argued that the timeless decision procedure dominates the causal
and evidential decision procedures. It will also be argued in turn that the
updateless decision procedure dominates the timeless decision procedure.
The difficulties of formalizing a modern variant of the “smoking gene”
problem will then be briefly examined.

1 Introduction

Decision Theory can quickly get ideological, potentially raising questions about
ethics, economics, causality, and even the nature of time. Yet we are faced
with decisions every day. We need some principle to frame and decide upon
choices we will make in the future. We want something that takes the model
of the world we have formed (at least in part) from our sense data and uses
this information to recommend an action that we should take. We will call
something that does this a decision procedure.

Imagine that we are attempting to choose a decision procedure for a hypo-
thetical agent (which could be ourselves). I argue there are two major topics
we have to consider before endorsing a decision procedure this agent will use
in the future:

1. What is our expectation of the kinds of problems the agent will face?
What is the payoff structure of the problems? What is the mechanism by which
the problem settles on those payoffs? Will the problems be of the same type
or will there be a distribution of different types? Do we know the probabil-
ity of different problem types or are we experiencing uncertainty about their
distribution?

2. Given each decision procedure the agent can use, what outcomes will it
obtain against various problem types?

I certainly do not intend to address all of this in one paper, but I give it as
a useful background to consider as we focus in on our main topic. When we
try to decide between various decision procedures, one very useful criterion to
consider is whether one decision procedure dominates a given one.



The logic of dominant actions is one that I trust many readers are familiar
with. It often makes great intuitive sense to choose an action that will leave
you at least as well off as another action will, no matter what state of the world
obtains. However, what if we apply that reasoning to our choice of decision
procedures? We may find that the decision procedure we would choose is not
one that recommends some traditionally dominant actions.

In this vein, I offer the idea of problem class dominance for decision proce-
dures. We can then say that one decision procedure dominates another one. By
this I mean that it performs well on all problems that a given decision procedure
performs well on, and then goes on to perform well on a class of problems the
given decision procedure does not perform well on.

I exclude from this analysis problems which are specifically and completely
biased for or against a certain type of procedure. For example, imagine a prob-
lem that looks at an agent’s decision procedure and grants (or removes) utility
based solely upon whether it matches a predefined decision procedure.! If we
admit this possibility, it appears impossible to talk of one decision procedure
dominating another across the board. We could always design some problem
which will disrupt the dominance. However, there still exists a broad range
of problems where this is not happening, and this is where we will focus our
attention.

Specifically, we are looking at problems where another agent (or nature
itself) can predict what action an agent is going to take. Presumably they
have some insight into the output of an agent’s decision procedure in order
to do so. In some situations, they might be able to actually run the agent’s
decision procedure and predict with perfect accuracy what the agent will do.
This idea becomes particularly salient if you are thinking about agents who are
computer programs, which will often have a well defined decision procedure
that can then be simulated to predict an action with perfect fidelity.

In fact it is from such a background that two of the decision procedures we
will discuss originate. However, they have potential applicability whenever
another agent might have some degree of predictive ability regarding your
actions, as we will soon see.

The course of this paper is a simple one. We will look at two possible
problems an agent could face, and then take a look ahead at four possible
decision procedures for handling those problems. We will then turn back to
the problems and attempt to formalize them so that we can more clearly apply
the decision procedures. We will then apply the decision procedures in some
detail, which should also help in understanding how they process problems in
general. Throughout this application, we will be considering the implications
from a standpoint of problem class dominance. Finally, we will conclude with
arguments for the dominance relationships between the various procedures.
We will also call for either counterexamples to our dominance arguments or
new procedures that are dominant over an even wider range of problems.

I That being said, I would like to strongly emphasize that calling a problem “biased” should be
considered provisional and perhaps a call to further attention rather than definitive and an excuse
(by itself) to ignore the problem or approaches that handle it well.



2 Some Problematic Situations

I'd like to start out by giving some examples of potential real world problems
an actual person could face. These are highly selected problems, designed to
make a specific point. For this reason they involve some relatively unusual
situations. I will first present the problems, with a focus on presenting them
realistically to build intuitions. Then we will attempt to formalize the problems.

2.1 Parfit’s Hitchiker

You are stranded in the desert. You are out of supplies, and do not have long to
live if you stay in the desert. Unfortunately you do not even have any money.
You are to some degree transparent, meaning that you are not a perfect liar- it is
sometimes possible for another human to tell when you are lying. Paul Ekman,
an expert on reading facial microexpressions, is driving across the desert when
he finds you. It is not worth his time or the gas to take you back to civilization
unless you will give him $20 in gas money when you arrive in the city. It is
not worth his effort to bother legally enforcing a promise of $20. Once you
reach the city, it is therefore completely possible for you to run off and never
see him again. There is not a commitment mechanism you can put in place to
prevent yourself from doing this. You know all of this, and cannot remove that
knowledge from your head.

You begin to consider future actions. You know that when you reach the
city you will be strictly better off with the $20. Using some decision procedures
you will run off and not pay your driver. If you are self-aware, you know that
you will do this. So you will have to lie to the driver in the desert. Paul Ekman
will detect your lie with 5% probability, and agents who would run off with the
$20 will be more likely to starve in the desert. 2

2.2 The Curious Benefactor

A wealthy woman decides to play a game with one of her associates. She flips
a fair coin. If it comes up tails she will ask the associate to pay her $5. If it
comes up heads she will give 1 million dollars to the associate, but only if she
predicts that the associate would have given her the $5 if the coin had come up
tails. She then flips the coin and it comes up tails. She explains the situation to
her associate and asks them for the $5. Should the associate give her the $5?°

2Notice that Paul Ekman never accidentally thinks you are telling a lie when you are being
truthful, yet he only has a mere 5% probability of detecting a lie. This lack of false positives
is merely to simplify some calculations later so that they are easier to follow. The analysis that
is performed on the problem applies with generality as long as Ekman has a higher probability
of thinking that a lie is a lie than that a truth is a lie (and as long as the payout differences are
substantial enough to make the detection matter).

3 A version of this game was actually played by Anders Sandberg against the philosopher Nick
Bostrom for 20£ vs. 1£, using an unknown decimal digit of pi instead of a coin. Bostrom paid the
1£, and it even turns out that Sandberg had correctly predicted that he would. See Yudkowsky,
2014 in the references section for details.



3 Decision Procedures

An agent’s decision procedure takes sense data and outputs an action. These
statements of various decision procedures combine a statement of the utility
rule with the condition that the procedure selects the act with maximal utility.*

3.1 The ”Evidential” Decision Procedure
n
EDP(s) = arg max Z U(O;) * P(O; |ans)
Given a string of sense data (s), finds the action (a) that generates the highest

expected utility by weighting the utility of outcomes (U(O;)) by their probability
conditional on the action.

3.2 The ”"Causal” Decision Procedure
CDP(s) = arg maxZ U(O;) * P(a O O;|s)

Finds the action that generates the highest expected utility where the out-
comes are weighted by the probability that the action will cause them (Pearl’s
”do calculus”).’

3.3 The "Timeless” Decision Procedure
TDP(s) = arg max Z U(O;) * P("TDP(s) := a™ o O; | s)

Finds the action that will maximize the expected utility where the probabil-
ities are the probability that if the procedure outputs the action®, it will cause
the outcome to occur.

3.4 The “Updateless” Decision Procedure
UDP(s) = argmaxZ U(O;)*P("TUDP := f:s—a' 0> O;)
f i

Finds a function mapping sense data to actions that will maximize the utility of
outcomes weighted by the probability that the outcome will be caused by the
procedure returning that mapping.

4In the case of a tie, we will need a tiebreaking method. We can imagine many possible tie
breaking criteria, so each statement is really a family of decision procedures utilizing various tie
breaking criteria. On the particular problems we are using as examples there are no ties, so we are
ignoring this complication for now.

5The symbol 0 is commonly used to express conditionals that are “nonbacktracking” (and
hence causal). For example P(a O~ b) indicates the probability that a will cause b (or that b is
inevitable).

6The corner quotes "example™ are used to allow the procedure to refer to its own output.



4 Formalizing The Problems

We will be using causal diagrams inspired by Judea Pearl’s representation of
bayesnets. These are a way of compactly representing a probability distribution
using non-backtracking conditionals.

4.1 Formalizing Parfit’s Hitchhiker

Let’s start out by looking at a causal diagram of the problem. This diagram
contains some superfluous nodes, but they are included to help make clear the
assumptions going into various steps of the problem. The arrows represent the
causal influence of one variable on another.
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Figure 1: A diagram of the Hitchhiker Problem.

The agent has a model of their decision in the city that is created using
their perfect knowledge of their decision procedure. This model leads to facial
microexpressions that can be read by Paul Ekman. Based upon this reading,
he decides whether or not to give the agent a ride. Meanwhile, the agent’s
decision procedure determines what the agent’s decision will be if it arrives in
the city. The net payoff is then determined by Paul Ekman’s decision and the
agent’s decision if it does actually get a ride and reach the city.

It may be helpful to look at each node in some finer detail.

Decision Procedure Takes in sense data and outputs an action



Agent’s Model of its Decision in the City Theagentrunsahypothetical string
of sense data through its own decision procedure to see the action the pro-
cedure would output if the agent found themselves in the city. This is
how the agent knows what it will do if that situation obtains.

Facial Expressions Display the agent’s actual model of “decision in city” to
Ekman.

Paul Ekman Can read lies from facial expressions correctly 5% of the time.
Returns “lie” or “truth”.

Drive off or give ride Outputs “ride” if Ekman returns “truth”. Outputs “no
ride” if Ekman returns "lie”.

Agent’s Decision in City Output of agent’s decision procedure determines
what the agent will decide. Outputs “pay 20” or “don’t pay 20”

The possible actions the agent can take are:
a, = "stay and pay $20”
a; = "leave and don’t pay”
The possible actions that Paul Ekman can take are:
ry, = "give ride to city”
r, = “don’t give ride”

Outcomes and corresponding utility levels”:

Condition Outcome Utility Description
T 01 0 “Die in Desert”
ry Na O, 1000 "Live and Give”
ryNa O3 1020  ”“Live and Leave”

Table 1: The payouts for the Hitchiker Problem

4.2 Formalizing The Curious Benefactor

The benefactor has a model of what the agent will do, computed using the
agent’s decision procedure 8. She flips a coin, which creates one of two coun-
terfactual worlds (divided by the dotted line). If the coin is T, the agent is asked
for $5, and its decision determines the payoffs (the coin flip already being fixed
at ”T”). If the coin comes up heads, then the benefactor querys her model of
the agent, and using the agent’s decision procedure, decides whether the agent

"Note that risk neutrality and a fairly direct mapping of money to utility are being imposed
merely to make the arguments easier to follow for some readers. The arguments do not hinge on
risk neutrality, although we do need sufficient utility differences for our choice between some of
the procedures to matter.

8Note that the dashed arrow connecting the decision procedure to the curious benefactor is
dotted merely to distinguish it from the other arrows, although it could also been seen as denoting
the unique role it has in crossing the counterfactual dividing line.
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Figure 2: A diagram of the Curious Benefactor Problem.

would have given $5 in the situation where the coin came up T. If the agent
would have given the $5, then she will give the agent $1,000,000.
The agent’s possible actions if asked for $5 are:

ay = "give $5”
a, = "give nothing”
The benefactor’s possible actions after querying its model are:
by = "give IM”
b, = "don’t give 1IM”

The Benefactor outputs b; if her model of the agent returns a; when fed
sensory input corresponding to world T.

The Benefactor outputs b, if her model of the agent returns a4, when fed
sensory input corresponding to world T.

The possible outcomes and associated utilities are:

Condition Outcome Utility Description
TNa 04 -5 ” Asked and Paid”
TNay o)) 0 ”Asked and didn’t pay”
HnNb, O3 0 ”Not Given Million”
Hnb O4 M ”Given Million”

Table 2: The payouts for the Curious Benefactor Problem

5 Howdothe decision procedures interact with these
problems?
5.1 Defining Success and Failure

For this paper our definition of a successful decision procedure will be one that
generates higher expected utility before entering a problem (ex-ante). In the



models we are using the output of a decision procedure directly and completely
determines the action an agent will take. So if we know what action the agent’s
decision procedure will output when faced with the problem, we can calculate
the ex-ante expected utility leaving all chance variables free to vary according
the problem setup.

5.2 EDP fails on the hitchiker problem

The Evidential Decision Procedure tells the agent to maximize the expected
utility of outcomes using the probabilities of the outcomes conditional on the
action taken. In mathematical terms, the evidental decision procedure is:

EDP(s) = arg maXZ U(O;)* P(Oi|lans)

This takes a string of sense data (s), and returns an action that maximizes
the expected utility of outcomes weighted by the respective probabilities of the
outcomes conditional on an action and the string of sense data the agent takes
in (the intersection of the action and the sense data).

What action will EDP(s) output if the agent uses it upon arriving in the city?

If the agent models their arrival in the city, then their hypothetical sense
data tells the agent that Paul Ekman’s decision node is set to r,. This means
that as the agent considers potential actions, there will only be two possible
outcomes.

To be explicit:

Pr(O4ls) =0

Pr(Oyls) + Pr(Osls) = 1
The probabilities of O, and O3 conditional on a, N s are:
Pr(Ozla, Nns) =1

Pr(Osla, Ns) =0

This corresponds to our outcome mapping, where a, and r,, yield O,
The probabilities of O, and O3 conditional on a; N s are:

Pr(Ozla;ns) =0

Pr(Osla;ns) =1

This again corresponds to our outcome mapping, where 4; and r,, yield O3
So the expected utility of g, is:

U(O1) * Pr(O1la, N's) + U(Oz) * Pr(Oala, N s) + U(O3) * Pr(Osla, N s)

and substituting,
00+ 1000 *1 + 1020 %0 = 1000

While the expected utility of 4; is:

U(Oq) * Pr(Oqla; N s) + U(Oy) = Pr(Oz)a; N s) + U(O3) = Pr(Osla; N s)



and substituting,
0+0+1000+0+ 10201 = 1020

Since EU(a;) = 1020 > EU(a,) = 1000, EDP will recommend action a; “live
and leave”

This means that the agent’s model of its actions upon arriving in the city
are that it will choose 4; “live and leave” because it is an EDP agent. This will
reflect in its facial expressions. Paul Ekman will take those facial expressions
FE(a) and decide if the agent is lying. He will give or not give a ride based upon
that.

If FE(a,) are observed, he will give a ride with Pr(r,) = 1

If FE(a;) are observed, he will give a ride with Pr(r,) = 0.95

We know that the agent will choose a; because it is following the EDP. We
can then compute the expected outcomes from the causal graph as

Pr(O4la;) = Pr(rylap) = 0.05
Pr(O1lar) = Pr(ry N apla;) = 0
Pr(Osla;) = Pr(ry N ajla;) = 0.95
So the agent’s expected utility is:

U(Ol) +0.05 + U(Oz) =0+ U(O3) *0.95
0+0.05+0+*0+1020*0.95 = 969

On what basis can we say that EDP systematically fails on this problem?
Imagine the agent had a decision procedure (we’ll call it “DP” as a stand in)
that output action a, (two of which we will examine), then:

Pr(O1lay) =0
Pr(Ozla,) =1
Pr(Ozla,) =0

and the expected utility would be:
U(O1)* 0+ U(O2) * 1+ U(O3) 0 = U(Oy) * 1
which in this case is just
1000 =1 = 1000
Notice that:
EU(DP := a,) = 1000 > 969 = EU(DP := a)

and this the basis for my claim that agents who implement EDP will sys-
tematically lose in expected utility on the Hitchiker Problem. In fact, any
agent which implements a decision procedure that recommends action 4; upon
arriving in the city will lose.



5.3 CDP systematically fails on the hitchiker problem

Given the above analysis, we simply have to show that CDP returns 4; if fed a
sensory string corresponding to the ride variable being fixed to r,,.
Recall that CDP is expressed as:

CDP(s) = arg maxz U(O;) * P(a O0— O;|s)

This chooses the action that maximizes expected utility where the utility
levels of the various outcomes are weighted by the probability that the action
will cause the outcome to obtain.

Upon inputting the hypothetical sensory string corresponding to being in
the city, the agent will look at P(a; 0— O;) and P(a, O O;).

For a;:
P(@a0- 01)=0
P(al O0— Oz) =0
Pla;0- 0O3) =1
For a,:
P(a, o— 01) =0
P, 0> 07) =1
P(llp 00— 03)=0

So expected utility for g; is

U(O1) *0+ U(Oz) =0+ U(O3) *1
EU(a;) =0+0+0+1000 + 1020 1 = 1020
Wheras expected utility of a,, is

U(O1) 0 + U(Oz) * 1 + U(O3) + 0

EU(a;)) =0+0+1000 =1 + 1020 = 0 = 1000

Since EU(a;) = 1020 > 1000 = EU(ay) when fed the sensory string corre-
sponding to being in the city, CDP recommends the agent do a;.

5.4 TDP succeeds on the hitchiker problem

Our discussion of the Timeless Decision Procedure is motivated by the observa-
tion that in many problems involving prediction, the prediction must be based
upon knowledge about what the output of an agent’s decision procedure will
be. This idea becomes particularly salient if you are thinking about agents who
are computer programs and therefore potentially have a decision procedure
that can be run by another program with perfect fidelity to output an action
given various inputs. Such a situation has been analyzed using modal agents
in the context of a one shot prisoners” dilemma, and the agent which has so far
enjoyed the greatest success was inspired by Timeless Decision Theory (Barasz
et al, 2014).

10



TDP uses a variable in the decision diagram called a logical node that repre-
sents logical uncertainty about the outcome of the agent’s decision procedure
(See Altair, 2013; Yudkowsky, 2010). It considers the outcomes weighted by the
probabilities that, if the decision procedure returns a certain action, this will
cause the outcome to obtain. Mathematically, this is:

TDP(s) = argmax Y U(O;) = P("TDP(s) :=a™ 00— O;|s)
g

On the hitchiker problem, TDP has two actions to consider in the city, 2; and
a,. The key is that it gets to use essentially the full causal graph, because it can
look from the node representing the decision procedure’s output, instead of the
action node itself. Therefore for a;:

P("TDP(s) := a," 0> O | 5) = 0.05

P(TTDP(s) := a," o~ Os|s) = 0.95

Wheras for a,,

P("TDP(s) :=a,' 0> Oz ]s) =1

So
EU(TDP(s) := a,) = U(O7) * 1 = 1000

and
EU(TDP :=a;) = U(O7) *0.05 + U(O3) * 0.95 = 0% 0.05 + 1020 * 0.95 = 969

Since
EU(TDP(s) := a,) = 1000 > 969 = EU(TDP(s) := a;)

EDP will return a,. Since it returns g, it will have an expected utility of 1000
going into the problem instead of 969.

5.5 TDP fails on the Curious Benefactor

TDP’s failure on the Curious Benefactor is straightforward. Upon seeing the
coinflip has come up tails, it updates on the sensory data and realizes that it is
in the causal branch where there is no possibility of getting a million.

Specifically, upon receiving the sense data that the coin has come up tails,
s(T), it will calculate the probability of the outcomes upon outputting the two
different actions as:

Pr("TDP := a;™ o Oy)s(T)) = 1

and
Pr("TDP :=a," 0> Oy|s(T)) =1

This corresponds to our outcome mapping, where once the coin has come
up tails, the only possible outcomes remaining are either giving the $5 and
receiving nothing (O1), or not giving the $5 and receiving nothing (O5).

11



TDP will therefore evaluate the expected utility of giving the $5 as:
U(O1) * Pr("TDP :=a;" O- O4ls(T)) = =5+1 = -5
and the expected utility of not giving the $5 as:
U(Op) * Pr("TDP := ;7" O- Oyls(T)) =0+1=0

Because EU(a,) = =5 < 0 = EU(ay), TDP will take action a,.

The problem is that an agent whose decision procedure outputs action 4,
upon receiving s(T) has an expected ex-ante utility of 0, while an agent whose
procedure outputs action a, has an expected ex-ante utility of 500,000-2.5.

5.6 UDP succeeds on the Curious Benefactor

Our discussion of the “Updateless” Decision Procedure is motivated by a desire
to have agents avoid losing out in ex-ante expected utility by updating on
sensory evidence. This sensory updating appears to be the problem in the
Curious Benefactor dilemma, and as we would therefore expect, UDP handles
it well.

UDP tells us to set a mapping from sensory data to actions. It then computes
the utility of the outcomes weighted by the probability that the outcome will
obtain causally if the agent has that mapping.

Mathematically this is,

UDP(s) = argmax Y U(0;) » P("UDP := f : 5+ a" 0> O;)
f i

which finds a function f that maps sense data to actions in a way that maximizes
the expected utility which is defined by weighting each outcome’s utility level
by the probability that the outcome is caused by the agent’s use of that mapping

We will use s(T) to denote the sense string corresponding to observation of
world T (tails), and s(H) to denote the sense string corresponding to observation
of world H (heads).

The agent does not have to take any action for the situation where the coin
has come up heads, so s(H) = @

There are then two options for UDP to consider. Recall that 4, is giving the
$5 when asked while a; is not giving it.

fl :8(T) > ay
and
f2 : S(T) = dy

Let’s first look at f; : s(T) +— a5, else no action (s(H) — @). If the agent senses T
it will take action a,, and this will land it in outcome O,. To be specific,

Pr("UDP :=f, :5(T) = a, 0— O4]T) =0
because a; and a, are exclusive.

Pr(CUDP := fo : s(T) > ay™ O Oy|T) = 1

12



because we are in situation tails and the action is 4,. So
Pr("UDP := f, : s(T) = ax" O Oz) = Pr(" f : 5(T) = ap” O O,|T)*Pr(T) = 1+0.5 = 0.5

Futhermore,
Pr("UDP := f, :s(T) = a," O— O3lH) =1

Pr("UDP := f, :s(T) = a," 00— O4H) =0

because when the coin comes up H (heads), the benefactor is simulating what
the agent would do if situation T (tails) obtained.
Note that:

Pr("UDP := f, : s(T) = ay 0= O3) = Pr("UDP := f : s(T) = a,” O— O3|H)+Pr(H) = 1+0.5 = 0.5
The expected utility of f,, EU(f,) is then:
EU(f;) = U(Op)+Pr("UDP := f, : s(T) - a3 O- Oy)+U(O3)+*Pr("UDP := f, : s(T) = a,” O— O3)
which substituting, yields:
EU(f) =0%0.5+0%0.5=0

Wheras if we look at f; : s(T) + a1, else no action (s(H) — @) we will see
that:
Pr("UDP = f1 :s(T) = a;" 0> O1]T) =1

because the agent takes a; and the coin flip is tails in the situation where the
agent is called upon to decide while,

Pr("UDP := f1 :5(T) = a1 0> Oy|T) =0
because a; and 4, are exclusive. Note that:
Pr("UDP := f; :s(T) = a1 0= Oy) = Pr("UDP := f; : 5(T) = a1 O— O4H)+Pr(H) = 1+0.5=0.5
and this means that the expected utility of f; would be:
EU(f1) = U(O1)*Pr("UDP := f1 : s(T) = a1 O— O1)+U(O4)*Pr("UDP := f1 : s(T) = a1 O— Os)
so substituting,
EU(f1) = -5+0.5+ 1,000,000 = 0.5 = 500,000 — 2.5

Since 500,000 — 2.5 > 0, UDP will recommend that the agent use f; and take
action a1, giving the $5 if asked.

As noted above in the analysis of TDP, the agent will take 4; and have an
expected utility going into the problem of 500, 000 — 2.5 instead of 0.

13



6 Conclusion

6.1 TDP dominates CDP

We have seen that both the evidential and the causal decision procedures yield
systematically lower utility on the hitchiker problem, while the timeless de-
cision procedure succeeds. The fact that both the causal and evidential pro-
cedures obtain this result indicates that the problem is not specifically biased
against a particular decision procedure. It then becomes necessary to consider
whether timeless decision theory will properly handle any problems that CDP
or EDP do well on in order to establish dominance.

Let us first consider CDP. CDP will perform well on any problems where the
decision procedure is irrelevant for computing the outcome of the problem.’
Only the action actually taken by the agent is needed. In these cases TDP works
just as well as CDP, because it will simply choose to output whatever action
CDP would have output.

Let us next consider EDP. EDP appears to perform well when there are no
common (or confounding) causes of the action and the outcomes, other than
the agent’s decision procedure itself. TDP will perform well on all of these
situations.

From this I conclude that TDP dominates CDP and EDP.

If it can be shown that there is a unbiased problem CDP performs well on
that TDP does not, then I am wrong that TDP dominates CDP. Likewise, if it
can be shown there is an unbiased problem EDP performs well on that TDP
does not, I will be wrong that TDP dominates EDP.

If such a problem can be found, then we will be in a situation where there
are some problems TDP does better on, and other problems which EDP or CDP
do better on. The choice of which procedure to use would have to be made
based on the expectation of the problem pool the agent will encounter.'

6.2 UDP dominates TDP

We have seen that UDP yields higher expected utility on the Curious Benefactor
problem than TDP. While we did not show it, CDP and EDP would also fail the
Curious Benefactor problem, indicating that it is unbiased.

We must then show that UDP succeeds in all problems where TDP will
succeed. TDP appears to succeed in situations where there aren’t counterfactual
branches with different sensory inputs. In these cases, UDP will only have one
piece of sense data to consider. It will then choose a mapping from that sense
data to the same action that TDP would have chosen. So it will succeed in all
the situations where TDP would succeed. I conclude that UDP dominates TDP,
and by extension, CDP and EDP.

If it can be shown that there is an unbiased problem that TDP performs well
on that UDP does not, then I am wrong that UDP dominates TDP.

90r more accurately the combination of discrepancy in utility levels and probability of effect is
sufficiently small.

197 believe that if we choose to limit our choice of procedure to one between CDP and EDP, then
this is also the situation we find ourselves in. Neither has problem class dominance over the other
by our ex-ante success criterion, and I believe this may help in part to explain why there has been
so much debate about which is superior.
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6.3 Can we do better?

It would be exciting to find a problem that UDP performs badly on, and then a
decision procedure that handles both it and all the problems that UDP performs
well on. The blackmailer problem ! may well be a source of such an insight.

It would also be exciting to find a procedure that somehow even handles
problems that are biased against it, allowing us to drop the qualification of
excluding biased problems from our definition of dominance.

6.4 A different perspective

It is no small leap to model agents who can predict another agent’s action by
simulating its decision procedure. Itis also no small leap to imagine choosing a
decision procedure for an agent, particularly if we imagine the agent is choosing
a decision procedure for itself. TDP and UDP are attempts to not only effectively
model these predictive dilemmas, but to process them in a way that is preferable
for an agent looking to do as well as possible in the future. I have presented
arguments that they succeed on this count, and that agents who adopt UDP
can expect to do at least as well, if not better, than agents who adopt TDP.
Likewise, agents who adopt TDP can expect to do at least as well, if not better,
as agents who adopt CDP or EDP. I also believe that the analysis of decision
procedures with the perspective of problem class dominance opens up exciting
new possibilites for thinking about decision theory not only in the context of
predictive dilemmas but in any category of problems we may face in the future.

'Yudkowsky via Armstrong, 2010
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7 Toxoplasmosis Gondii (Appendix)
71 The Problem

There is a single celled parasitic organism called toxoplasmosis gondii which
is normally found in cats. When rats are infected with it, it has been known
to cause attraction to cats and cat urine. Humans can also be infected, and
it has been shown to be correlated with various psychiatric disorders in hu-
mans. There has been some speculation that it could potentially cause humans
to exhibit increased attraction to cats. Suppose we live in a world where this
speculation has been solidly verified, and the correlation is 80% between toxo-
plasmosis infection and liking cats. Suppose also that a particular cat has been
verified to be free of the parasite and cannot possibly infect you. The action an
agent has to consider is whether to enjoy petting the cat (Altair refers to this as
"adore cats”), keeping in mind that petting the cat is fun and gains utility, but
80% of the people who enjoy petting cats have toxoplasmosis. 2

7.2 The Trouble with Formalizing The Toxoplasmosis problem

A tentative causal diagram (Diagram 1) of the problem is included. This dia-
gram appears reasonable if we assume that Toxoplasmosis Gondii is stepping
in to modify the agent’s action after the decision procedure has already out-
putted its decision (Think of how I might knock your hand out of the way after
you've decided to reach for a glass of water). In this case, both CDP and TDP
handle the problem easily while basic EDP does not.

/" Agent's Decision

Procedure
( Toxoplasmosis ) ™~
AN e ( Agent's Decision |
™~ . '/,- g ™ ~
lliness ) [ Agent's Action
’ ‘\- ,.'/’.
Qutcomes

Figure 3: Diagram 1 of the Toxoplasmosis Problem.

12Note that this problem is designed to be a modern version of the smoking gene problem with
assumptions that do not contradict current scientific knowledge.
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The real issue comes when we consider that the problem setup seems to
indicate that the toxoplasmosis is having an effect on the agent’s decision itself,
as seen in diagram 2. If this is the case and the decision is a direct output of the
decision procedure, then this means that toxoplasmosis must be influencing
the decision procedure itself. As we have been specifying decision procedures
throughout this paper, this means that it likely either acts through the utility
function or through the specification of outcome probabilities (or both). The
problem setup seems to suggest that it is acting through the utility function.
We could use a “tickle defense” to allow the procedures to know what their
utility function is, but that seems to be missing the real meat of the issue.

How can toxoplasmosis uniformly create this supposed 80% correlation
using only the utility function if it doesn’t even get to know beforehand what
decision procedures the agents are using? We might assume that there is a
certain population implementing some mixture of decision procedures that has
created the 80% correlation, but that does little to help us know what is actually
going on within the decision procedures themselves.

Agent's Decision
Procedure

Toxoplasmosis

Agent's Action

N /

Figure 4: Diagram 2 of the Toxoplasmosis Problem.
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